翻訳と辞書
Words near each other
・ Cheech
・ Cheech & Chong
・ Cheech & Chong's Animated Movie
・ Cheech & Chong's Greatest Hit
・ Cheech & Chong's Next Movie
・ Cheech & Chong's The Corsican Brothers
・ Cheech & Chong's Wedding Album
・ Cheech (film)
・ Cheech and Chong (album)
・ Cheech Marin
・ Cheech Wizard
・ Cheeded
・ Cheedikada
・ Cheeese
・ Cheeger bound
Cheeger constant
・ Cheeger constant (graph theory)
・ Cheek
・ Cheek (disambiguation)
・ Cheek (rapper)
・ Cheek (rapper) discography
・ Cheek (surname)
・ Cheek augmentation
・ Cheek by Jowl
・ Cheek kissing
・ Cheek Mountain Thief
・ Cheek Mountain Thief (album)
・ Cheek piercing
・ Cheek pouch
・ Cheek reconstruction


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cheeger constant : ウィキペディア英語版
Cheeger constant

In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold ''M'' is a positive real number ''h''(''M'') defined in terms of the minimal area of a hypersurface that divides ''M'' into two disjoint pieces. In 1970, Jeff Cheeger proved an inequality that related the first nontrivial eigenvalue of the Laplace-Beltrami operator on ''M'' to ''h''(''M''). This proved to be a very influential idea in Riemannian geometry and global analysis and inspired an analogous theory for graphs.
== Definition ==

Let ''M'' be an ''n''-dimensional closed Riemannian manifold. Let ''V''(''A'') denote the volume of an ''n''-dimensional submanifold ''A'' and ''S''(''E'') denote the ''n''−1-dimensional volume of a submanifold ''E'' (commonly called "area" in this context). The Cheeger isoperimetric constant of ''M'' is defined to be
: h(M)=\inf_E \frac,
where the infimum is taken over all smooth ''n''−1-dimensional submanifolds ''E'' of ''M'' which divide it into two disjoint submanifolds ''A'' and ''B''. Isoperimetric constant may be defined more generally for noncompact Riemannian manifolds of finite volume.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cheeger constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.